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Abstract

The electro-elastic stress field due to a piezoelectric screw dislocation near the tip of a wedge-shaped bi-material

interface is derived. The screw dislocation is subjected to a line charge and a line force at the core. The explicit closed-

form analytical solutions for the stress field are derived by means of the complex variable and conformal mapping

methods. The stress and electric intensity factors of the wedge tip induced by the dislocation and the image force acting

on the dislocation are also formulated and calculated. The influence of the wedge angle and the different bi-material

constant combinations on the image force is discussed. Numerical results for three particular wedge angles are cal-

culated and compared.
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1. Introduction

In engineering materials and structures, wedge-shaped interfaces are very often encountered, such as in

polycrystalline materials, composite materials with irregular inclusions, and square silicon die encapsulated

by epoxy matrix in electronic packages, etc. As a wedge-shaped interface introduces a stress singularity at

its corner where a micro-crack could be easily initiated, it is important to analyze such kind of problems.

Bogy and Wang (1971) investigated the problem of a composite body consisting of two dissimilar isotropic,

homogeneous wedges. In their work, an eigen equation for determining the order of singularity at

the corner of wedge shaped interface was given. The same problem was restudied by Chen and Nisitani

(1993), in which an explicit closed form expression was established for the singular stress field at the corner.
Reedy and Guess (1997) analyzed the critical value of the stress singularity intensity at a wedge corner for a
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micro-crack to be initiated. Reedy (2000) further studied the connection between the failure criteria based

on the critical values of singularity intensity factor at the wedge corner and the traditional stress intensity

factor. Pahn and Earmme (2000) investigated the problem for a crack initiated from the corner of a

rectangular inclusion. Xiao et al. (2001) obtained the elastic solutions for a single edge dislocation near a
wedge-shaped bi-material interface, which can be used as the Green�s function to study interaction prob-
lems for a crack near a wedge corner.

Recently, piezoelectric materials have become widely used in device applications such as sensors and

actuators. Due to their intrinsic electro-mechanical coupling phenomenon, various types of defects em-

bedded in piezoelectric materials, such as dislocations, cracks, cavities, and inclusions, can adversely in-

fluence the performance of such piezoelectric devices. Therefore, it is important to analyze the behavior of

such defects under both electrical and mechanical loads. A number of research works on dislocations and

cracks in piezoelectric solids have been published in open literature. To name a few, Deeg (1980) examined
the effect of a dislocation, a crack and an inclusion upon the coupled response of piezoelectric solids. Pak

(1990a) obtained closed form solutions for a screw dislocation in a piezoelectric solid subjected to external

loads, he derived the generalized Peach-Koehler forces acting on the screw dislocation. Chung and Ting

(1995) investigated a line dislocation at the apex of a piezoelectric composite wedges or spaces. Liu et al.

(1999) studied the interaction between a screw dislocation and a piezoelectric bi-material interface. Lee

et al. (2000) derived an exact solution for the interaction problem of a semi-infinite crack and a screw

dislocation in a piezoelectric material. Chen et al. (2002) obtained an exact solution for the interaction

problem of a semi-infinite anti-crack, a line force, a line charge and a line screw dislocation in a piezoelectric
material.

In this paper, we focus on the interaction problem of a dislocation near a wedge-shaped bi-material

interface. The materials are assumed to have piezoelectric behaviors. The present solution can be seen as an

extension of our previous study (Xiao et al., 2001) where the piezoelectric behaviors have not been taken

into account.

The objective of the present paper is to obtain the electro-elastic solution for a piezoelectric screw dis-

location interacting with a nearby wedge-shaped bi-material interface as shown in Fig. 1. The dislocation is

loaded by a line force and a line charge. The two materials are referred to as Material I and Material II.
Without loss of generality, the dislocation b ¼ ðbz; buÞ with a line force p and a line charge q acted at its core
is assumed to be located in Material I. Here bu is known as the electric-potential-dislocation.

Fig. 1. A piezoelectric screw dislocation near a wedge-shaped inhomogeneity.
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2. Basic formula

In a linear piezoelectric medium, the governing field equations and constitutive relations at constant

temperature can be written as

rij;j ¼ 0; ð2:1aÞ

Di;i ¼ 0; ð2:1bÞ

rij ¼ cijkluk;l � ekijEk; ð2:2aÞ

Di ¼ eikluk;l þ eikEk; ð2:2bÞ

where rij, ui, Di and Ei are stress, displacement, electric displacement and electric fields, respectively. cijkl, ekij
and eij are the corresponding elastic, piezoelectric and dielectric constants which satisfy the following re-
lations

cijkl ¼ cklij ¼ cijlk ¼ cjikl; ekij ¼ ekji; eik ¼ eki: ð2:3Þ

As the current problem is an anti-plane one, the anti-plane displacement w is coupled with the in-plane

electric field Ex and Ey , where the variables are independent of the longitudinal coordinate z, such that

w ¼ wðx; yÞ; Ex ¼ Exðx; yÞ; Ey ¼ Eyðx; yÞ: ð2:4Þ

The governing field equations and constitutive relations in (2.1) and (2.2) are reduced to

orzx

ox
þ orzy

oy
¼ 0;

oDx

ox
þ oDy

oy
¼ 0; ð2:5Þ

rzx ¼ c44
ow
ox

þ e15
ou
ox

; rzy ¼ c44
ow
oy

þ e15
ou
oy

; ð2:6aÞ

Dx ¼ e15
ow
ox

� e11
ou
ox

; Dy ¼ e15
ow
oy

� e11
ou
oy

; ð2:6bÞ

where u ¼ uðx; yÞ is the electric potential and

Ex ¼ � ou
ox

; Ey ¼ � ou
oy

: ð2:7Þ

Substitution of (2.6) into (2.5) yields

c44r2wþ e15r2u ¼ 0; ð2:8aÞ

e15r2w� e11r2u ¼ 0; ð2:8bÞ

where r2 is the two-dimensional Laplacian operator. The above equations can be satisfied if we choose

r2u ¼ 0; ð2:9Þ

where

u ¼ fw;ugT ð2:10Þ
is the generalized displacement vector.
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From (2.10), the strain and electric fields can be expressed as

ex ¼ fczx;�ExgT ¼ ou

ox
; ð2:11Þ

ey ¼ fczy ;�EygT ¼ ou

oy
; ð2:12Þ

while the stress and electric displacement fields can be expressed as

tx ¼ frzx;DxgT ¼ C ou

ox
; ð2:13Þ

ty ¼ frzy ;DygT ¼ C ou

oy
; ð2:14Þ

with

C ¼ c44 e15
e15 �e11

� �
: ð2:15Þ

Eq. (2.9) indicates that u is a harmonic function vector which can be taken as the real part of some

complex potentials of the complex variable z ¼ xþ iy ¼ reih, such that

u ¼ ReffwðzÞ; fuðzÞgT ¼ Re½fðzÞ
; ð2:16Þ
where Re stands for the real part. Then (2.11)–(2.14) can be combined as

ex � iey ¼ f 0ðzÞ; ð2:17Þ

tx � ity ¼ Cf 0ðzÞ; ð2:18Þ
where the prime denotes the derivative with respect to the argument z. Therefore, the resultant force and
normal component of the electric displacement along any arbitrary arc AB is

T ¼
Z B

A
txdy � ty dx ¼ C Im½fðzÞ
BA; ð2:19Þ

where Im stands for the imaginary part.

3. Solution of the problem

The bonding between Material I and Material II is assumed to be perfect, where the continuity condi-

tions along the interface h ¼ �ðp � u0=2Þ can be written as

uð1ÞðzÞ ¼ uð2ÞðzÞ; Tð1ÞðzÞ ¼ Tð2ÞðzÞ: ð3:1Þ
Inserting (2.16) and (2.19) into (3.1) yields

Re½fð1ÞðzÞ
 ¼ Re½fð2ÞðzÞ
; Cð1ÞIm½fð1ÞðzÞ
 ¼ Cð2ÞIm½fð2ÞðzÞ
: ð3:2Þ
Our next main task is to determine the complex potentials fð1ÞðzÞ and fð2ÞðzÞ by using (3.2) and the dis-

continuity conditions of elastic displacement and electric potential for a piezoelectric screw dislocation.

The complex potentials fð1ÞðzÞ and fð2ÞðzÞ can be written as

fð1ÞðzÞ ¼ fð1Þ0 ðzÞ þ fð1Þ1 ðzÞ; fð2ÞðzÞ ¼ fð2Þ1 ðzÞ; ð3:3Þ

2044 B.J. Chen et al. / International Journal of Solids and Structures 40 (2003) 2041–2056



where f
ð1Þ
0 ðzÞ is associated with the unperturbed field which is related to the solutions of an infinite homo-

geneous medium and is holomorphic in the entire domain except at zd . The functions f
ð1Þ
1 ðzÞ and fð2Þ1 ðzÞ are

holomorphic and correspond to the perturbed fields in the domains occupied by Material I and Material II,

respectively.
Introducing the mapping function

z ¼ 11=k; ð3:4Þ

with k ¼ p=ð2p � u0Þ and 1 ¼ n þ ig, it maps the boundary h ¼ �ðp � u0=2Þ in the z-plane into the

imaginary axis in the 1-plane as shown in Fig. 2. As a result, the continuity conditions along the interface in
the 1-plane become

uð1Þð1cÞ ¼ uð2Þð1cÞ; Tð1Þð1cÞ ¼ Tð2Þð1cÞ; ð3:5Þ

or

Re½fð1Þð1cÞ
 ¼ Re½fð2Þð1cÞ
; Cð1ÞIm½fð1Þð1cÞ
 ¼ Cð2ÞIm½fð2Þð1cÞ
; ð3:6Þ

where 1c is along the imaginary axis. Eq. (3.6) can be rewritten as

fð1Þð1cÞ þ fð1Þð1cÞ ¼ fð2Þð1cÞ þ fð2Þð1cÞ; ð3:7aÞ

Cð1Þ½fð1Þð1cÞ � fð1Þð1cÞ
 ¼ Cð2Þ½fð2Þð1cÞ � fð2Þð1cÞ
; ð3:7bÞ
where the over-bar denotes the complex conjugate.

Substituting (3.3) into (3.7), and noting that �11c ¼ �1c holds along the imaginary axis, we have

f
ð1Þ
0 ð1cÞ þ f

ð1Þ
1 ð�1cÞ � f

ð2Þ
1 ð1cÞ ¼ f

ð2Þ
1 ð�1cÞ � f

ð1Þ
0 ð�1cÞ � f

ð1Þ
1 ð1cÞ; ð3:8aÞ

Cð1Þf
ð1Þ
0 ð1cÞ � Cð1Þf

ð1Þ
1 ð�1cÞ � Cð2Þf

ð2Þ
1 ð1cÞ ¼ Cð1Þf

ð1Þ
0 ð�1cÞ � Cð2Þf

ð2Þ
0 ð�1cÞ � Cð1Þf

ð1Þ
1 ð1cÞ; ð3:8bÞ

Fig. 2. A piezoelectric screw dislocation near a bi-material interface.
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Using the standard analytic continuation arguments (Muskhelishvili, 1975), we obtain

f
ð1Þ
1 ð1Þ ¼ ðCð1Þ þ Cð2ÞÞ�1ðCð1Þ � Cð2ÞÞ�ffð1Þ0 ð�1Þ; ð3:9aÞ

f
ð2Þ
1 ð1Þ ¼ 2ðCð1Þ þ Cð2ÞÞ�1Cð1Þf

ð1Þ
0 ð1Þ: ð3:9bÞ

Finally, the complex potential for the current problem in the 1 plane is obtained as

fð1Þð1Þ ¼ fð1Þ0 ð1Þ þ ðCð1Þ þ Cð2ÞÞ�1ðCð1Þ � Cð2ÞÞ�ffð1Þ0 ð�1Þ; ð3:10aÞ

fð2Þð1Þ ¼ 2ðCð1Þ þ Cð2ÞÞ�1Cð1Þf
ð1Þ
0 ð1Þ; ð3:10bÞ

where

f
ð1Þ
0 ð1Þ ¼ Að1Þ logðf � fdÞ; ð3:11Þ

with

Að1Þ ¼ Að1Þ
1

n
þ iAð1Þ

2 ;Bð1Þ
1 þ iBð1Þ

2

oT
; ð3:12Þ

and

Að1Þ
1 ¼ 1

2p
eð1Þ15 q� eð1Þ11 p

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

; Að1Þ
2 ¼ � bz

2p
; ð3:13aÞ

Bð1Þ
1 ¼ � 1

2p
eð1Þ15 p þ cð1Þ44 q

ð1Þ
44 eð1Þ11 þ eð1Þ15 e

ð1Þ
15

; Bð1Þ
2 ¼ � bu

2p
; ð3:13bÞ

in which bz; bu, p and q are the displacement discontinuity, electric potential across the slip plane, line force
and line charge at the dislocation core, respectively.
By doing the reverse mapping, the complex potentials in the physical plane are obtained as

fð1ÞðzÞ ¼ Að1Þ logðzk � zkdÞ þ ðCð1Þ þ Cð2ÞÞ�1ðCð1Þ � Cð2ÞÞ�AAð1Þ logðzk þ �zzkdÞ; ð3:14aÞ

fð2ÞðzÞ ¼ 2ðCð1Þ þ Cð2ÞÞ�1Cð1ÞAð1Þ logðzk � zkdÞ; ð3:14bÞ
where

�AAð1Þ ¼ fAð1Þ
1 � iAð1Þ

2 ;Bð1Þ
1 � iBð1Þ

2 gT: ð3:15Þ
It is worth to note that when k ¼ 1, the solution is fully reduced to a dislocation in a straight piezoelectric

bi-material interface. The detailed solution can be found in Liu et al. (1999).

4. Stress and electric displacement intensity factors (SEDIF)

As discussed in the Introduction, a wedge-shaped interface introduces a stress singularity at its corner

where a micro-crack could be easily initiated. In this section, the stress and electric fields are found and the

relative intensity factors are calculated. The strain, electric, stress and electric displacement fields are cal-
culated using (2.17), (2.18) and (3.14) such that

cð1Þzx cð1Þzy

�Eð1Þ
x �Eð1Þ

y

" #
¼ c0zx c0zy

�E0x �E0y

� �
þ að1Þ11 að1Þ12

að1Þ21 að1Þ22

" #
cazx cazy
�Ea

x �Ea
y

� �
; ð4:1Þ
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cð2Þzx cð2Þzy

�Eð2Þ
x �Eð2Þ

y

" #
¼ að2Þ11 að2Þ12

að2Þ21 að2Þ22

" #
c0zx c0zy
�E0x �E0y

� �
; ð4:2Þ

rð1Þ
zx rð1Þ

zy

Dð1Þ
x Dð1Þ

y

" #
¼ r0zx r0zy

D0
x D0

y

� �
þ bð1Þ11 bð1Þ12

bð1Þ21 bð1Þ22

" #
ra
zx ra

zy

Da
x Da

y

� �
; ð4:3Þ

rð2Þ
zx rð2Þ

zy

Dð2Þ
x Dð2Þ

y

" #
¼ bð2Þ11 bð2Þ12

bð2Þ21 bð2Þ22

" #
r0zx r0zy
D0

x D0
y

� �
; ð4:4Þ

where the matrices on the right-hand side of the equation are listed in Appendix A. Both the stress and

electric displacement show rk�1ð1=26 k6 1Þ type of singularity near the tip of the wedge. If we define an
intensity factor vector induced by the dislocation as

KD ¼ Krzx � iKrzy

KDx � iKDy

� �
; ð4:5Þ

then,

KD ¼ lim
z�>0

ð2pzÞ1�k
Cð1Þ df

ð1ÞðzÞ
dz

" #
: ð4:6Þ

Substituting (3.14a) into the above equation, we obtain

KD ¼ �kð2pÞ1�kfCð1ÞAð1Þz�k
d � Cð1ÞðCð1Þ þ Cð2ÞÞ�1ðCð1Þ � Cð2ÞÞ�AAð1Þ�zz�k

d g: ð4:7Þ

5. Image force on the dislocation

One of the major interests is calculating the image force acting on the dislocation. Following Pak (1990a),

the generalized Peach Koehler forces acting on a screw dislocation with a line force and a line charge can be

written as

Fx ¼ bzrTzy þ b/DT
y þ pcTzx þ qETx ; ð5:1Þ

Fy ¼ �bzrTzx � b/DT
x þ pcTzy þ qETy ; ð5:2Þ

where the variables rTzy , rTzx, D
T
y , D

T
x , cTzy , cTzx, E

T
y and ETx are calculated from

cTzx � icTzx
�ETx þ iETy

" #
¼ e0 þ ðCð1Þ þ Cð2ÞÞ�1ðCð1Þ � Cð2ÞÞe1; ð5:3Þ

rTzx rTzx
DT

x DT
x

� �
¼ cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #
cTzx cTzx
�ETx �ETx

� �
; ð5:4Þ

with

e0 ¼
k � 1

2zd
Að1Þ; ð5:5Þ
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e1 ¼
kzk�1d

zkd þ �zzkd
�AAð1Þ: ð5:6Þ

So that we have

cTzx cTzy
�ETx �ETy

" #
¼

cT0zx cT0zy
�ET0x �ET0y

" #
þ að1Þ11 að1Þ12

að1Þ21 að1Þ22

" #
cTazx cTazy
�ETax �ETay

" #
; ð5:7Þ

rTzx rTzy
DT

x DT
y

" #
¼

rT0zx rT0zy
DT0

x D0
y

" #
þ

bð1Þ11 bð1Þ12
bð1Þ21 bð1Þ22

" #
rTazx rTazy
DTa

x DTa
y

" #
; ð5:8Þ

where the matrices on the right-hand side of the equation are listed in Appendix B. The radial and tan-

gential components of the force on the dislocation can be calculated from

Fr ¼ Fx cos hd þ Fy sin hd ; ð5:9Þ

Ft ¼ �Fx sin hd þ Fy cos hd : ð5:10Þ

6. Numerical examples and discussions

Eqs. (5.9) and (5.10) give the explicit expressions for the force on the dislocation due to a screw dislo-

cation (bz; bu), a line charge (q) and a line force (p) located at (rd ; hd) in a wedge-shaped piezoelectric bi-

material. In our solutions, the wedge angle a0 can be any value with any material property. In order to have
a better understanding on the engineering applications of the current problem, examples with some par-

ticular values of angle a0 and material property combinations are given in the following sub-sections. In our
numerical calculations, we assumep ¼ q ¼ 0. The force on the dislocation is normalized by

F 0
z ¼ cð1Þ44 b

2
z

4prd
; ð6:1Þ

for bz, and

F 0
u ¼

eð1Þ11 b
2
u

4prd
; ð6:2Þ

for bu. Furthermore, we use the electric-mechanical coupling factor

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1Þ15 e

ð1Þ
15 =c

ð1Þ
44 eð1Þ11

q
: ð6:3Þ

To characterize the piezoelectric strength of Material I, three material constant ratios are introduced as

c ¼ cð2Þ44 =c
ð1Þ
44 ; ð6:4Þ

e ¼ eð2Þ11 =e
ð1Þ
11 ; ð6:5Þ

e ¼ eð2Þ15 =e
ð1Þ
15 : ð6:6Þ

Then, the normalized radial and tangential components of the image force on the dislocation bz and bu

can be expressed in terms of the dimensionless parameters c, e, k and e as
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F 

rbz

¼ �ð1þ cþ e þ ce þ k2 þ 2ek2 þ e2k2Þ þ kð2cþ 2ce þ 2k2cþ 2e2k2Þ
1þ e þ cþ ce þ k2 þ 2ek2 þ e2k2

; ð6:7Þ

F 

tbz

¼ kð1þ e � c� ce þ k2 � 2k2cþ 2ek2 � e2k2Þ tan hd

1þ e þ cþ ce þ k2 þ 2ek2 þ e2k2
; ð6:8Þ

F 

rbu

¼ 1þ e þ cþ ce þ k2 þ 2ek2 þ e2k2 � kð2e þ 2ce þ 2k2e þ 2e2k2Þ
1þ e þ cþ ce þ k2 þ 2ek2 þ e2k2

; ð6:9Þ

Fig. 3. F 

rbz
versus c ¼ cð2Þ44 =c

ð1Þ
44 with k ¼ 0:542, eð2Þ11 =e

ð1Þ
11 ¼ 1, eð2Þ15 =e

ð1Þ
15 ¼ 0.

Fig. 4. F 

rbu

versus c ¼ cð2Þ44 =c
ð1Þ
44 with k ¼ 0:542, eð2Þ11 =e

ð1Þ
11 ¼ 1, eð2Þ15 =e

ð1Þ
15 ¼ 0.
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and

F 

tbu

¼ kðe2k2 � 2ek2 þ 2k2e � k2 þ ce þ e � c� 1Þ tan hd

1þ e þ cþ ce þ k2 þ 2ek2 þ e2k2
; ð6:10Þ

where F 

rbz
, F 


tbz
are named as normalized radial and tangential components of the force on the dislocation bz

when bu ¼ 0, respectively; while F 

rbu
, F 


tbu
are normalized radial and tangential components of the force on

the dislocation bu when bz ¼ 0, respectively.
It is apparent to conclude from Eqs. (6.7)–(6.10) that the radial components of the force on the dislo-

cation are independent of hd , whilst the tangential components are closely related to tan hd .

The forces F 

rbz
and F 


rbu
versus c ¼ cð2Þ44 =c

ð1Þ
44 for different wedge angles are depicted in Figs. 3 and 4

respectively for k ¼ 1, k ¼ 2=3, k ¼ 1=2 and eð2Þ11 =e
ð1Þ
11 ¼ 1. Material I is taken to be PZT-5H piezoelectric

ceramic with k ¼ 0:542 (Pak, 1990b), and Material II is assumed to be pure elastic eð2Þ15 ¼ 0. Here k ¼ 1

Fig. 5. F 

rbz
versus e ¼ eð2Þ11 =e

ð1Þ
11 with k ¼ 0:542, cð2Þ44 =c

ð1Þ
44 ¼ 2, eð2Þ15 =e

ð1Þ
15 ¼ 0.

Fig. 6. F 

rbu

versus e ¼ eð2Þ11 =e
ð1Þ
11 with k ¼ 0:542, cð2Þ44 =c

ð1Þ
44 ¼ 2, eð2Þ15 =e

ð1Þ
15 ¼ 0.
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represents a straight interface, k ¼ 2=3 is a rectangular inhomogeneity case and k ¼ 1=2 is for a line in-
homogeneity case. Fig. 3 indicates that the elastic constant of Material II affects the radial component of

the force to a different extent at different wedge angles. For the straight interface case (k ¼ 1), F 

rbz
changes

its direction around ccr ¼ cð2Þ44 =c
ð1Þ
44 ¼ 1. The value of ccr increases with decreasing the wedge angle. When the

wedge angle becomes zero (the line inhomogeneity case (k ¼ 1=2)), F 

rbz
never changes its direction. How-

ever, the elastic constant of Material II has little influence on the force of the electric-potential disloca-

tionF 

rbu
, also this force never changes its direction, as shown in Fig. 4.

The influence from the dielectric constant ratio e ¼ eð2Þ11 =e
ð1Þ
11 on normalized forces F



rbz
and F 


rbu
are plotted

in Figs. 5 and 6 respectively with k ¼ 0:542, e ¼ 0 and cð2Þ44 =c
ð1Þ
44 ¼ 2 for k ¼ 1, k ¼ 2=3 and k ¼ 1=2. It is

observed from these two figures that the dielectric constant of Material II has little effect on the force on the

dislocation bz; however, its influence on the electric-potential dislocation bu is significant. The direction of

Fig. 7. F 

rbz
versus k with cð2Þ44 =c

ð1Þ
44 ¼ 2, eð2Þ11 =e

ð1Þ
11 ¼ 1, eð2Þ15 =e

ð1Þ
15 ¼ 0.

Fig. 8. F 

rbu

versus k with cð2Þ44 =c
ð1Þ
44 ¼ 2, eð2Þ11 =e

ð1Þ
11 ¼ 1, eð2Þ15 =e

ð1Þ
15 ¼ 0.
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force F 

rbu
depends heavily on the value of eð2Þ11 =e

ð1Þ
11 when the wedge angle is large (e.g. k ¼ 1) as depicted in

Fig. 6.

Figs. 7 and 8 show how the piezoelectric strength of Material I affects the force on the dislocation F 

rbz
and

F 

rbu

with cð2Þ44 =c
ð1Þ
44 ¼ 2, e ¼ 0, eð2Þ11 =e

ð1Þ
11 ¼ 1 for k ¼ 1, k ¼ 2=3 and k ¼ 1=2. The piezoelectric strength of

Material I enhances the force on the dislocation in the positive radial direction and reduces it in the negative

radial direction. The bigger the k value, the stronger the image force in the positive radial direction.
The variations of normalized image forces F 


rbz
and F 


rbu
versus the piezoelectric constant ratio e ¼ eð2Þ15 =e

ð1Þ
15

are shown in Figs. 9 and 10 respectively, for three different wedge angles and cð2Þ44 =c
ð1Þ
44 ¼ 0:2, eð2Þ11 =e

ð1Þ
11 ¼ 1.

Material I is taken as PZT-6B piezoelectric ceramic with k ¼ 0:271. In the figure, e ¼ eð2Þ15 =e
ð1Þ
15 < 0 indicates

that the poling directions of the two piezoelectric materials are opposite. It is observed that the parameters

Fig. 9. F 

rbz
versus e ¼ eð2Þ15 =e

ð1Þ
15 with cð2Þ44 =c

ð1Þ
44 ¼ 0:2, eð2Þ11 =e

ð1Þ
11 ¼ 1, k ¼ 0:271.

Fig. 10. F 

rbu

versus e ¼ eð2Þ15 =e
ð1Þ
15 with cð2Þ44 =c

ð1Þ
44 ¼ 0:2, eð2Þ11 =e

ð1Þ
11 ¼ 1, k ¼ 0:271.

2052 B.J. Chen et al. / International Journal of Solids and Structures 40 (2003) 2041–2056



such as the wedge angle, the elastic moduli and the piezoelectric constant will all affect the sign of the image

force in the radial direction.

7. Conclusions

In the current work, a line dislocation, a line force and a line charge in a wedge-shaped piezoelectric bi-

material structure are studied. Closed form solutions are derived for the stress, strain, electric displacement

and electric fields in terms of complex potentials and their derivatives by using the complex variable

method. The stress and electric displacement intensity factors and the image forces on the dislocation are

calculated. Numerical examples for a straight interface, a rectangle and a line inhomogeneity are given to

illustrate the influences of material constants, and piezoelectric strength on the image force.

Appendix A

að1Þ11 að1Þ12

að1Þ21 að1Þ22

" #
¼

cð1Þ44 þ cð2Þ44 eð1Þ15 þ eð2Þ15

eð1Þ15 þ eð2Þ15 �eð1Þ11 � eð2Þ11

" #�1
cð1Þ44 � cð2Þ44 eð1Þ15 � eð2Þ15

eð1Þ15 � eð2Þ15 eð2Þ11 � eð1Þ11

" #
; ðA:1Þ

að2Þ11 að2Þ12

að2Þ21 að2Þ22

" #
¼ 2

cð1Þ44 þ cð2Þ44 eð1Þ15 þ eð2Þ15

eð1Þ15 þ eð2Þ15 �eð1Þ11 � eð2Þ11

" #�1
cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #
; ðA:2Þ

bð1Þ11 bð1Þ12

bð1Þ21 bð1Þ22

" #
¼

cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #
að1Þ11 að1Þ12

að1Þ21 að1Þ22

" #
cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #�1

; ðA:3Þ

bð2Þ11 bð2Þ12

bð2Þ21 bð2Þ22

" #
¼

cð2Þ44 eð2Þ15

eð2Þ15 �eð2Þ11

" #
að2Þ11 að2Þ12

að2Þ21 að2Þ22

" #
cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #�1

; ðA:4Þ

c0zx ¼
k
2p

eð1Þ15 q� eð1Þ11 p

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 cos h � rk�1rk
d cos½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

� kbz
2p

r2k�1 sin h � rk�1rk
d sin½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

; ðA:5Þ

c0zy ¼
k
2p

eð1Þ15 q� eð1Þ11 p

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 sin h � rk�1rk
d sin½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

þ kbz
2p

r2k�1 cos h � rk�1rk
d cos½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

; ðA:6Þ

E0x ¼
k
2p

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 cos h � rk�1rk
d cos½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

þ kbu

2p
r2k�1 sin h � rk�1rk

d sin½ð1� kÞh þ khd 

r2k þ r2kd � 2rkrk

d cos kðh � hdÞ
; ðA:7Þ
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E0y ¼
1

2p
eð1Þ15 p þ cð1Þ44 q

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 sin h � rk�1rk
d sin½ð1� kÞh þ khd 


r2k þ r2kd � 2rkrk
d cos kðh � hdÞ

� kbu

2p
r2k�1 cos h � rk�1rk

d cos½ð1� kÞh þ khd 

r2k þ r2kd � 2rkrk

d cos kðh � hdÞ
; ðA:8Þ

cazx ¼
k
2p

eð1Þ15 q� eð1Þ11 p

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 cos h þ rk�1rk
d cos½ð1� kÞh � khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

þ kbz
2p

r2k�1 sin h þ rk�1rk
d sin½ð1� kÞh � khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

; ðA:9Þ

cazy ¼
k
2p

eð1Þ15 q� eð1Þ11 p

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 sin h � rk�1rk
d sin½ðk � 1Þh þ khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

� kbz
2p

r2k�1 cos h þ rk�1rk
d cos½ðk � 1Þh þ khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

; ðA:10Þ

Ea
x ¼

k
2p

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 cos h þ rk�1rk
d cos½ðk � 1Þh þ khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

� kbu

2p
r2k�1 sin h � rk�1rk

d sin½ðk � 1Þh þ khd 

r2k þ r2kd þ 2rkrk

d cos kðh þ hdÞ
; ðA:11Þ

Ea
y ¼

1

2p
eð1Þ15 p þ cð1Þ44 q

cð1Þ44 e11 þ eð1Þ15 e
ð1Þ
15

r2k�1 sin h � rk�1rk
d sin½ðk � 1Þh þ khd 


r2k þ r2kd þ 2rkrk
d cos kðh þ hdÞ

þ kbu

2p
r2k�1 cos h þ rk�1rk

d cos½ðk � 1Þh þ khd 

r2k þ r2kd þ 2rkrk

d cos kðh þ hdÞ
; ðA:12Þ

r0zx r0zy
D0

x D0
y

" #
¼

cð1Þ44 eð1Þ15
eð1Þ15 �eð1Þ11

" #
c0zx c0zy
�E0x �E0y

" #
; ðA:13Þ

ra
zx ra

zy

Da
x Da

y

" #
¼

cð1Þ44 eð1Þ15
eð1Þ15 �eð1Þ11

" #
cazx cazy
�Ea

x �Ea
y

" #
: ðA:14Þ

Appendix B

cT0zx ¼ k � 1

4prd

eð1Þ15 q� eð1Þ11 p

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

cos hd

"
� bz sin hd

#
; ðB:1Þ

cT0zy ¼ k � 1

4prd

eð1Þ15 q� eð1Þ11 p

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

sin hd

"
þ bz cos hd

#
; ðB:2Þ
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ET0x ¼ k � 1

4prd

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

cos hd

"
þ bu sin hd

#
; ðB:3Þ

ET0y ¼ k � 1

4prd

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

sin hd

"
� bu cos hd

#
; ðB:4Þ

rT0zx ¼ k � 1

4prd
� sin hd cð1Þ44 bz



þ eð1Þ15 bu

�
� p cos hd

� �
; ðB:5Þ

rT0zy ¼ k � 1

4prd
cos hd cð1Þ44 bz



þ eð1Þ15 bu

�
� p sin hd

� �
; ðB:6Þ

DT0
x ¼ k � 1

4prd
� sin hd eð1Þ15 bz



� eð1Þ11 bu

�
þ q cos hd

� �
; ðB:7Þ

DT0
y ¼ k � 1

4prd
cos hd eð1Þ15 bz



� eð1Þ11 bu

�
þ q sin hd

� �
; ðB:8Þ

cTazx ¼ k
4prd cos khd

eð1Þ15 q� eð1Þ11 p

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

sinðk
"

� 1Þhd þ bz cosðk � 1Þhd

#
; ðB:9Þ

cTazy ¼ k
4prd cos khd

eð1Þ15 q� eð1Þ11 p

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

cosðk
"

� 1Þhd � bz sinðk � 1Þhd

#
; ðB:10Þ

ETax ¼ k
4prd cos khd

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

sinðk
"

� 1Þhd � bu cosðk � 1Þhd

#
; ðB:11Þ

ETay ¼ k
4prd cos khd

eð1Þ15 p þ cð1Þ44 q

cð1Þ44 eð1Þ11 þ eð1Þ15 e
ð1Þ
15

cosðk
"

� 1Þhd þ bu sinðk � 1Þhd

#
; ðB:12Þ

rTazx ¼ k
4prd cos khd

cosðk
h

� 1Þhd cð1Þ44 bz



þ eð1Þ15 bu

�
� p sinðk � 1Þhd

i
; ðB:13Þ

rTazy ¼ �k
4prd cos khd

sinðk
h

� 1Þhd cð1Þ44 bz



þ eð1Þ15 bu

�
þ p cosðk � 1Þhd

i
; ðB:14Þ

DTa
x ¼ k

4prd cos khd
cosðk

h
� 1Þhd eð1Þ15 bz



� eð1Þ11 bu

�
þ q sinðk � 1Þhd

i
; ðB:15Þ

DTa
y ¼ �k

4prd cos khd
sinðk

h
� 1Þhd eð1Þ15 bz



� eð1Þ11 bu

�
� q cosðk � 1Þhd

i
: ðB:16Þ
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