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Abstract

The electro-elastic stress field due to a piezoelectric screw dislocation near the tip of a wedge-shaped bi-material
interface is derived. The screw dislocation is subjected to a line charge and a line force at the core. The explicit closed-
form analytical solutions for the stress field are derived by means of the complex variable and conformal mapping
methods. The stress and electric intensity factors of the wedge tip induced by the dislocation and the image force acting
on the dislocation are also formulated and calculated. The influence of the wedge angle and the different bi-material
constant combinations on the image force is discussed. Numerical results for three particular wedge angles are cal-
culated and compared.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Dislocation; Wedge-shaped interface; Interaction; Stress and electric intensity factor; Force on dislocation

1. Introduction

In engineering materials and structures, wedge-shaped interfaces are very often encountered, such as in
polycrystalline materials, composite materials with irregular inclusions, and square silicon die encapsulated
by epoxy matrix in electronic packages, etc. As a wedge-shaped interface introduces a stress singularity at
its corner where a micro-crack could be easily initiated, it is important to analyze such kind of problems.
Bogy and Wang (1971) investigated the problem of a composite body consisting of two dissimilar isotropic,
homogeneous wedges. In their work, an eigen equation for determining the order of singularity at
the corner of wedge shaped interface was given. The same problem was restudied by Chen and Nisitani
(1993), in which an explicit closed form expression was established for the singular stress field at the corner.
Reedy and Guess (1997) analyzed the critical value of the stress singularity intensity at a wedge corner for a
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micro-crack to be initiated. Reedy (2000) further studied the connection between the failure criteria based
on the critical values of singularity intensity factor at the wedge corner and the traditional stress intensity
factor. Pahn and Earmme (2000) investigated the problem for a crack initiated from the corner of a
rectangular inclusion. Xiao et al. (2001) obtained the elastic solutions for a single edge dislocation near a
wedge-shaped bi-material interface, which can be used as the Green’s function to study interaction prob-
lems for a crack near a wedge corner.

Recently, piezoelectric materials have become widely used in device applications such as sensors and
actuators. Due to their intrinsic electro-mechanical coupling phenomenon, various types of defects em-
bedded in piezoelectric materials, such as dislocations, cracks, cavities, and inclusions, can adversely in-
fluence the performance of such piezoelectric devices. Therefore, it is important to analyze the behavior of
such defects under both electrical and mechanical loads. A number of research works on dislocations and
cracks in piezoelectric solids have been published in open literature. To name a few, Deeg (1980) examined
the effect of a dislocation, a crack and an inclusion upon the coupled response of piezoelectric solids. Pak
(1990a) obtained closed form solutions for a screw dislocation in a piezoelectric solid subjected to external
loads, he derived the generalized Peach-Koehler forces acting on the screw dislocation. Chung and Ting
(1995) investigated a line dislocation at the apex of a piezoelectric composite wedges or spaces. Liu et al.
(1999) studied the interaction between a screw dislocation and a piezoelectric bi-material interface. Lee
et al. (2000) derived an exact solution for the interaction problem of a semi-infinite crack and a screw
dislocation in a piezoelectric material. Chen et al. (2002) obtained an exact solution for the interaction
problem of a semi-infinite anti-crack, a line force, a line charge and a line screw dislocation in a piezoelectric
material.

In this paper, we focus on the interaction problem of a dislocation near a wedge-shaped bi-material
interface. The materials are assumed to have piezoelectric behaviors. The present solution can be seen as an
extension of our previous study (Xiao et al., 2001) where the piezoelectric behaviors have not been taken
into account.

The objective of the present paper is to obtain the electro-elastic solution for a piezoelectric screw dis-
location interacting with a nearby wedge-shaped bi-material interface as shown in Fig. 1. The dislocation is
loaded by a line force and a line charge. The two materials are referred to as Material I and Material II.
Without loss of generality, the dislocation b = (b,, b,,) with a line force p and a line charge ¢ acted at its core
is assumed to be located in Material I. Here b, is known as the electric-potential-dislocation.

II

)

Fig. 1. A piezoelectric screw dislocation near a wedge-shaped inhomogeneity.
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2. Basic formula

In a linear piezoelectric medium, the governing field equations and constitutive relations at constant
temperature can be written as

g;; =0, (2.1a)
D;; =0, (2.1b)
Oj; = CijtiUk, — €pijE, (2.2a)
D; = ejquy; + ek, (2.2b)

where o;;, u;, D; and E; are stress, displacement, electric displacement and electric fields, respectively. ¢, ex;
and ¢; are the corresponding elastic, piezoelectric and dielectric constants which satisfy the following re-
lations

Cijki = Cklij = Cijik = Cjikl,  €kij = €kji;  Eik = Epi- (2-3)

As the current problem is an anti-plane one, the anti-plane displacement w is coupled with the in-plane
electric field E, and E,, where the variables are independent of the longitudinal coordinate z, such that

WZW()C,)/), E; :Ex(x’y)v Ey :Ey(x7y)' (24)

The governing field equations and constitutive relations in (2.1) and (2.2) are reduced to

do.. Qo oD, 0D,
- = Z = 2.
ox Oy T * dy 9 (2:3)
ow 0 ow 0
Oy :C44a+€15%, Oy = C44@+915£, (2.6a)
ow 0 ow 0
szelsa—ﬁné—()f, D}:Zelsa—sua—z’ (2.6b)
where ¢ = @(x,y) is the electric potential and
Op Op
Ex:_77 y = T A 2.7
Ox ’ oy 27)
Substitution of (2.6) into (2.5) yields
c44V2w + 615V2q0 = 0, (283)
615V2W - 811V2g0 = O7 (28b)

where V? is the two-dimensional Laplacian operator. The above equations can be satisfied if we choose

Vu=0, (2.9)
where
u={w, o} (2.10)

is the generalized displacement vector.
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From (2.10), the strain and electric fields can be expressed as

Ou
= {0 —E} = — 2.11
sx {/Zx? X} ax ) ( )
T du
& ={1,,—E} = > (2.12)
while the stress and electric displacement fields can be expressed as
Ou
tx: zanx T:C_7 2.13
{r2 D) = €2 (2.13)
Ou
t, = {0, D} = Co (2.14)
with
C= {C““ ers ] (2.15)
€15 —é1

Eq. (2.9) indicates that u is a harmonic function vector which can be taken as the real part of some
complex potentials of the complex variable z = x + iy = re?, such that

u=Re{f,(2), f,(2)}" = Relf(2)], (2.16)
where Re stands for the real part. Then (2.11)—(2.14) can be combined as

& —ig, =1'(2), (2.17)

t, —it, = Cf'(2), (2.18)

where the prime denotes the derivative with respect to the argument z. Therefore, the resultant force and
normal component of the electric displacement along any arbitrary arc AB is

B
T= / t.d, — t,dx = CIml[f(z)]", (2.19)
A

where Im stands for the imaginary part.

3. Solution of the problem

The bonding between Material I and Material II is assumed to be perfect, where the continuity condi-
tions along the interface 0 = (7 — ¢,/2) can be written as

ul(z) =u?(z2), TV (z) = T?(2). (3.1)
Inserting (2.16) and (2.19) into (3.1) yields
Re[f"(z)] = Re[f?(z)], CVIm[fV(z)] = CPIm[f?(z))]. (3.2)

Our next main task is to determine the complex potentials f')(z) and f?(z) by using (3.2) and the dis-
continuity conditions of elastic displacement and electric potential for a piezoelectric screw dislocation.
The complex potentials £ (z) and £ (z) can be written as

e =1 +1@), 2@ =), (3.3)
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where f(()l)(z) is associated with the unperturbed field which is related to the solutions of an infinite homo-
geneous medium and is holomorphic in the entire domain except at z,. The functions f (11)(2) and f §2> (z) are
holomorphic and correspond to the perturbed fields in the domains occupied by Material I and Material 11,
respectively.

Introducing the mapping function

z=¢", (34)

with 1 =7n/(2n — ¢,) and ¢ = ¢ +1in, it maps the boundary 0 = £(n — ¢,/2) in the z-plane into the
imaginary axis in the ¢g-plane as shown in Fig. 2. As a result, the continuity conditions along the interface in
the ¢-plane become

uV(e) =u?(c), T()=TYq), (3.5)
or

Reff"(c.)] = Re[f?(c,)], CVIm[fV(c,)] = CPIm[f®(c,)], (3.6)
where ¢, is along the imaginary axis. Eq. (3.6) can be rewritten as

() + V() =1(c) +1%(c.), (3.7a)

VY () — 1)) = CPI(c,) — 19 (c), (3.70)

where the over-bar denotes the complex conjugate.
Substituting (3.3) into (3.7), and noting that . = —¢, holds along the imaginary axis, we have

£ (c.) + 11 (—c0) = 17 () = 117 (=) — £ (—<0) — 11 (<), (3.8a)
Y (c,) — CVED(—¢,) — €Y () = €V (—¢,) - COLY (—¢,) — €V (e,), (3.8b)
N ¢ -plane
Sa

Fig. 2. A piezoelectric screw dislocation near a bi-material interface.
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Using the standard analytic continuation arguments (Muskhelishvili, 1975), we obtain

V() = (€Y + ) (e — CED (—¢), (3.9a)
f(12)(g) =2(c™ 4 C(Z))*lc(l)fgl)(g)' (3.9b)
Finally, the complex potential for the current problem in the ¢ plane is obtained as
f(c) =1£,"(c) + (€ + )€ — ) (), (3.10a)
() =2(cM + C(Z))*l(j(l)fgl)(g)’ (3.10b)
where
£y () = AV log({ - ¢,), (3.11)
with
T
A = L) il 50 450 (.12)
and
1 ey _ gD b
(1) 159~ éulp (1) :
A =————F A =— (3.13a)
Y
1 eVptellg b
Bil) __ 1 es ad B<21> =—-° (3.13b)
o2 l) + el 2

in which b., b,, p and q are the displacement discontinuity, electric potential across the slip plane, line force
and line charge at the dislocation core, respectively.
By doing the reverse mapping, the complex potentials in the physical plane are obtained as

fV(z) = AV log(z* — 24) + (CV + €)'V — c?)AV log(z* +25), (3.14a)

f0(z) = 2(C + c?)'cVAV log(z* — 27), (3.14b)
where

A =4V —ia), BV — BT (3.15)

It is worth to note that when 4 = 1, the solution is fully reduced to a dislocation in a straight piezoelectric
bi-material interface. The detailed solution can be found in Liu et al. (1999).

4. Stress and electric displacement intensity factors (SEDIF)

As discussed in the Introduction, a wedge-shaped interface introduces a stress singularity at its corner
where a micro-crack could be easily initiated. In this section, the stress and electric fields are found and the
relative intensity factors are calculated. The strain, electric, stress and electric displacement fields are cal-
culated using (2.17), (2.18) and (3.14) such that

V(1) (1) "0 70 (1) (1) a W
wo o= Tl B &) ()
_Ex _Ey 7Ex 7Ey ay ayy Tty Ty
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[ (2 2 2 2 40 0

/%2) yiy(; - [aégi ag [ o yzyo]’ (4.2)
__EX 7y ay ay | 7B —E
[ 1 0 0 1 1 B .

o ol=[5 ) %5 5] 43)
_D D, D; Dy By By Dy Dy
[, @ @ L@ 0o 0

vo b | = b B [623 Jﬂ’ (44)
_D D y by’ by b, D y

where the matrices on the right-hand side of the equation are listed in Appendix A. Both the stress and
electric displacement show 7*~'(1/2 < A< 1) type of singularity near the tip of the wedge. If we define an
intensity factor vector induced by the dislocation as

ko= | i (@3)
then,
Kp = lim (27z)' [ dfm(z)]. (4.6)
2—>0 dz
Substituting (3.14a) into the above equation, we obtain
Kp = —2(2n)' {CVAVz* — V() + @) () — c?HADz, 4. (4.7)

5. Image force on the dislocation

One of the major interests is calculating the image force acting on the dislocation. Following Pak (1990a),
the generalized Peach Koehler forces acting on a screw dislocation with a line force and a line charge can be
written as

F, = b} + byDT + pyl. + qET, (5.1)
F, = —b.0., — byD; + py}, + qEy, (5.2)
where the variables azTy, ol, DyT, DI, yZTy, X, E}T and E! are calculated from

T imT
yzx - lyzx

— 1) V-1 e _ @
[ } _ lcfés el [ Lok ] (5.4
T T | 1 1 T T |’ :
D, D, 655) _851) —E. -E
with
-1
£ A, (5.5)
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it
o= Al (5.6)
Za 17z
So that we have
M, \ 1 .
oo | [ ] laﬁl’ a(llz)] ey 57)
T T 0 TO 1 1 Ta Ta | :
| £ —E —E° K, agl> a(zz) —E* -E
r.T T TO _TO ) L Ta .Ta
O-zx O-zy o-zx O-zy lb 11 b 12 sz o-z_v ( 5 8)
T T TO 10 1 1 Ta pyTa |’ :
| D, Dy D, Dy b(2 1) b(2 2) D, Dy

where the matrices on the right-hand side of the equation are listed in Appendix B. The radial and tan-
gential components of the force on the dislocation can be calculated from

F, = F,cos 0, + F,sin Uy, (5.9)

F, = —F,sin0, + F, cos 0,. (5.10)

6. Numerical examples and discussions

Eqgs. (5.9) and (5.10) give the explicit expressions for the force on the dislocation due to a screw dislo-
cation (b,, b,), a line charge (¢) and a line force (p) located at (r,, 0,) in a wedge-shaped piezoelectric bi-
material. In our solutions, the wedge angle «, can be any value with any material property. In order to have
a better understanding on the engineering applications of the current problem, examples with some par-
ticular values of angle oy and material property combinations are given in the following sub-sections. In our
numerical calculations, we assumep = g = 0. The force on the dislocation is normalized by

(D72
cy b
F;O _ 44 z7 (61)
dnr,
for b., and
(g2
e b
F="1"0 6.2
?* dmr,’ (6.2)
for b,. Furthermore, we use the electric-mechanical coupling factor
H (1), 1),
k= 55)655)/C§4>8(11)~ (6.3)
To characterize the piezoelectric strength of Material I, three material constant ratios are introduced as
2, 0
¢= 0514)/0514>a (6.4)
2) (1
&= 3(11)/8(11)» (6.5)
2), (1
e= 6(15)/6(15>- (6.6)

Then, the normalized radial and tangential components of the image force on the dislocation 4. and b,,
can be expressed in terms of the dimensionless parameters ¢, e, k and ¢ as
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(1 4+ c+ e+ ce+ k> 4 2ek? + &2k*) + A(2c + 2ce + 2k*c + 2ek?)

b T 1 +e+4c+ce+ k? 4+ 2ek? + e2k?

)

M1 +e—c—ce+k*> =2k + 2ek* — e*k*) tan 0,

F, =

b 1 +e+c+ce+ k% + 2ek? + e2k2 ’

. l+e+c+ce+ k4 2ek® + k> — (26 4 2ce + 2k%e + 2°k?)
by 1 +e+c+ce+ k%4 2ek? + e2k2 ’

Fig. 3.

Frb

Fig. 4.

F

Fyj, versus ¢ = /el with k =0.542, 62 /760 = 1, €2 /el = 0.
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Cay /044

05
| A=1/2
0.44
) I— A=2/3
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0.2
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] A=1
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Cy4 /‘344
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rb,
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and

o _)(ezkz—2@k2+2k26—k2+08+8—c— 1) tan 6, (6.10)
the 1 +e+c+ce+k?+2ek? + e2k2 ’ '

where F; , F; are named as normalized radial and tangential components of the force on the dislocation b,
when b, = 0, respectively; while Fy, . Fy, are normalized radial and tangential components of the force on
the dislocation b, when b. = 0, respectively.

It is apparent to conclude from Egs. (6.7)—(6.10) that the radial components of the force on the dislo-
cation are independent of 0,, whilst the tangential components are closely related to tan 0,.

The forces Fy, and Fj, versus c = o for dlﬂerent wedge angles are depicted in Figs. 3 and 4
respectively for 2 =1, A =2/3, 4 =1/2 and & /¢! = 1. Material I is taken to be PZT 5H piezoelectric
ceramic with £ = 0.542 (Pak, 1990b), and Material II is assumed to be pure elastic e15 =0. Here 1 =1

0.4 e
021
Z rb, l&___ki_
L T == 4=2/3 T

02{__| a=12

...........................................

0 02 04 06 08 12 14 16 18 2
2) [ ()
l/e

Fig. 5. F, versus ¢ = el /el with k = 0.542, ¢ /cll) =2, 2 /7€) = 0.

'1_

0.81

0.67

0.4

Frbw 0.2

D_

0.21

0.4
0 02 04 06 08 1 12 14 16 18 2

12)/(,;.(1)

Fig. 6. F};, versus ¢ = el /el with k = 0.542, ) /) =2, 7€) = 0.
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represents a straight interface, 4 =2/3 is a rectangular inhomogeneity case and A = 1/2 is for a line in-
homogeneity case. Fig. 3 indicates that the elastic constant of Material 11 affects the radial component of
the force to a different extent at different wedge angles. For the straight interface case (4 = 1), F; changes
its direction around ¢, = c44 /e 44) = 1. The value of ¢, increases with decreasing the wedge angle When the
wedge angle becomes zero (the line inhomogeneity case (4 = 1/2)), F;; never changes its direction. How-
ever, the elastic constant of Material II has little influence on the force of the electric-potential disloca-
tionF7;, , also this force never changes its direction, as shown in Fig. 4.

The influence from the dielectric constant ratio & = & /el s“ on normalized forces F;, and Fj; ~are plotted
in Figs. 5 and 6 respectively with £ = 0.542, ¢ = 0 and c44 /c44 =2forA=1,A=2/3and 1=1/2. It is
observed from these two figures that the dielectric constant of Material II has little effect on the force on the
dislocation b.; however, its influence on the electric-potential dislocation b,, is significant. The direction of

1.4
1.21
1.

0.8
* 061 e
I?rb, {‘,(__,-—
ko P
0.21 o
1/2
1 B b I St
-0.21
0 02 04 0B 08 1 12 14 16 18 2
k
Fig. 7. F;, versus k with P/ =2, 6076 =1, e(]zs)/eﬁls) =0.
D_dj\ A=12
0.2 1 2=2/3 |

02]

0.4

D 02 04 0B 08 1 12 14 16 18 2
k

Fig. 8. F; versus k with 2/l =2, 62740 =1, 2 /€)= 0.
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force [ depends heavily on the value of 8521) / 8211) when the wedge angle is large (e.g. 2 = 1) as depicted in
Fig. 6.

Figs. 7 and 8 show how the piezoelectric strength of Material I affects the force on the dislocation F; and
Fy, with cﬁ)/cft? =2,e=0, sﬁ)/egll) =1for A=1, 2=2/3 and A= 1/2. The piezoelectric strength of
Material I enhances the force on the dislocation in the positive radial direction and reduces it in the negative
radial direction. The bigger the £ value, the stronger the image force in the positive radial direction.

The variations of normalized image forces F;, and F, versus the piezoelectric constant ratio e = eV /el

are shown in Figs. 9 and 10 respectively, for three different wedge angles and cﬁ /cﬁ? =0.2, sﬁ) /851]) =1.

Material I is taken as PZT-6B piezoelectric ceramic with £ = 0.271. In the figure, e = eﬁ? /ejs < 0 indicates

that the poling directions of the two piezoelectric materials are opposite. It is observed that the parameters

[
.
o

B -3 k. a
) /.M
€5 /els

Fig. 9. F versus e = €3 /el with ¢} /c{i) = 0.2, &} /el) = 1, k = 0.271.

i 4 2 i
(2) / (D)
€;s / €

Fig. 10. F, versus e = e\2 /e with ¢ /cl) = 0.2, &2 /6l = 1, k = 0.271.

rb,
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such as the wedge angle, the elastic moduli and the piezoelectric constant will all affect the sign of the image
force in the radial direction.

7. Conclusions

In the current work, a line dislocation, a line force and a line charge in a wedge-shaped piezoelectric bi-
material structure are studied. Closed form solutions are derived for the stress, strain, electric displacement
and electric fields in terms of complex potentials and their derivatives by using the complex variable
method. The stress and electric displacement intensity factors and the image forces on the dislocation are
calculated. Numerical examples for a straight interface, a rectangle and a line inhomogeneity are given to

illustrate the influences of material constants, and piezoelectric strength on the image force.

ON
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